A Fast Treecode for Multiquadric Interpolation with Varying Shape Parameters

نویسندگان

  • Quan Deng
  • Tobin A. Driscoll
چکیده

A treecode algorithm is presented for the fast evaluation of multiquadric radial basis function (RBF) approximations. The method is a dual approach to one presented by Krasny and Wang, which applies far-field expansions to clusters of RBF centers (source points). The new approach clusters evaluation points instead and is therefore easily able to cope with basis functions that have different multiquadric shape parameters. The new treecode is able to evaluate an approximation on N centers at M points in O((N + M) logM) time in the ideal case when evaluation points are uniformly distributed. When coupled with a two-level restricted additive Schwarz preconditioner for GMRES iterations, the treecode is well suited for use within an adaptive RBF iteration, previously described by Driscoll and Heryudono, as is demonstrated by experiments on test functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Evaluation of Multiquadric RBF Sums by a Cartesian Treecode

A treecode is presented for evaluating sums defined in terms of the multiquadric radial basis function (RBF), φ(x) = (|x|2 + c2)1/2, where x ∈ R3 and c ≥ 0. Given a set of N nodes, evaluating an RBF sum directly requires CPU time that scales like O(N2). For a given level of accuracy, the treecode reduces the CPU time to O(N logN) using a far-field expansion of φ(x). We consider two options for ...

متن کامل

TENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE

In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...

متن کامل

Fast Evaluation of Radial Basis Functions: Methods for Generalized Multiquadrics in Rn

A generalised multiquadric radial basis function is a function of the form s(x) = ∑N i=1 diφ(|x − ti|), where φ(r) = ( r2 + τ2 )k/2 , x ∈ Rn, and k ∈ Z is odd. The direct evaluation of an N centre generalised multiquadric radial basis function at m points requires O(mN) flops, which is prohibitive when m and N are large. Similar considerations apparently rule out fitting an interpolating N cent...

متن کامل

A New Approach to Improved Multiquadric Quasi-Interpolation by Using General Hermite Interpolation

Abstract In this paper, a new approach to improve univariate multiquadric operators is surveyed. The presented scheme is obtained by using Hermite interpolating polynomials where the function is approximated by generalized LB quasi-interpolation operator. Error analysis shows that the convergence rate depends on the shape parameter c. Thus, our operators could provide the desired smoothness and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2012